Сравнительная таблица теплопроводности современных строительных материалов

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана;
e{\displaystyle e} — заряд электрона;
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]

ϰ=ik3π3/2d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Что влияет на теплопроводность строительных материалов

Есть несколько параметров, которые сильно влияют на тепловую проводимость.

  1. Структура самого материала.
  2. Его плотность и влажность.

Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.

583d588933a9a07f976221d70b55f913.jpgПористая структура строительного материала

Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.

У влажной стены тепловая проводимость выше

Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

Разъяснения показателей в таблице теплопроводности материалов и утеплителя их классификация

В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из красного кирпича в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.

1655ea190f9d9b741e188980542f2b21.jpgЛисты пенопласта

Благодаря широкому ассортименту плотности пенопластовых листов ими можно отлично произвести тепловую изоляцию стен из ОСБ и оштукатурить сверху, что также увеличит эффективность работы утеплителя.

2ec42aff3536f1bca41294dfc559b26f.jpgОштукатуривание пенопласта

Вы можете ознакомиться с уровнем теплопроводности утеплителя, таблично представленного на фото ниже.

Теплопроводность утеплителей

Классификация теплоизоляции

По способу передачи тепла теплоизоляционные материалы разделяются на два вида:

  • Утеплитель который поглощает любое воздействие холода, жары, химического воздействия и т.д.;
  • Утеплитель, умеющий отражать все виды воздействия на него;

По значению коэффициентов теплопроводности материала, из которого изготовлен утеплитель его различают по классам:

  • А класс. Такой утеплитель имеет наименьшую тепловую проводимость, максимальное значение которой 0,06 Вт (м*С);
  • Б класс. Обладает средним показателем СИ параметра и достигает 0,115 Вт (м*С);
  • В класс. Наделён высокой теплопроводностью и демонстрирует показатель в 0,175 Вт (м*С);

Примечание! Не все утеплители имеют стойкость к высоким температурам. Например, эковата, соломит, ДСП, ДВП и торф нуждаются в надёжной защите от внешних условий.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:

τ∂q∂t=−(q+ϰ∇T).{\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}
 

Если время релаксации τ{\displaystyle \tau }
 
пренебрежимо мало, то это уравнение переходит в закон Фурье.

Объёмный вес и теплопроводность строительных материалов.

 

При строительстве и ремонте зданий и сооружений в целях сокращения теплопотерь зимой и теплопоступлений летом следует учитывать рациональное применение эффективных теплоизоляционных материалов.

Теплотехнические свойства ограждающих конструкций зданий и сооружений определяются сопротивлением материалов теплопередаче, воздухопроницанию, паропроницанию и показателем теплоустойчивости строительных материалов.

Требуемые нормами сопротивления теплопередаче, паропроницанию и воздухопроницанию ограждений должны быть обеспечены не только в пределах всех основных глухих участках конструкций, но и на участках примыкания к наружным стенам, перекрытиям, балконам, карнизам и др., а также по периметру проёмов, в углах стен, местах стыков и теплопроводных включений.

Материалы малой теплопроводности и плотности относятся к теплоизоляционным и предназначены для защиты жилых, общественных, производственных зданий, а также сооружений и тепловых агрегатов от потерь тепла. Теплоизоляционные материалы классифицируют в соответствии с ГОСТ 16381-77.

По форме и внешнему виду их подразделяют на штучные изделия (плиты, блоки, кирпич, цилиндры, полуцилиндры, сегменты), рулонные и шнуровые (маты, шнуры, жгуты), рыхлые и сыпучие материалы (вата минеральная, стеклянная, вспученные перлит, вермикулит).

По структуре строения материалы подразделяют на волокнистые, ячеистые и зернистые.

По виду исходного сырья материалы подразделяют на неорганические (асбест, шлаки, стекло, кремнезем, перлит, вермикулит и другие вещества минерального происхождения) и органические, состоящие из растительных и животных волокон или пластмасс (деревоволокнистые, пробковые, пенопласты).

По теплопроводности материалы и изделия подразделяют на классы:

  • А — низкой (до 0,06 Вт/м*К),
  • Б — средней (0,06…0,115),
  • В — повышенной (свыше 0,115…0,175).

Ограждающие конструкции жилых зданий и сооружений принимают в зависимости:

Советы и рекомендации по выбору материалов

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.

    Особенность климата

  3. Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги. В противном случае через время между поверхностями образуется плесень.

    Плесень на стенах

  4. Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.

    Затяжка пенопласта гидроизоляцией

  5. Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

  1. Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

  2. Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  3. Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.

«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

aec032bb5168dba2ecdbd74203fd05cd.jpgОкно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

1a8884d697a938061e07376348a87ece.jpgРасчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

bf8df1699fc5e6b40eab42220189312c.jpgРасчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

 

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Х

Х

Что такое теплопроводность

Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

  • бетон –1,51 Вт/м×К;
  • кирпич – 0,56;
  • древесина – 0,09-0,1;
  • песок – 0,35;
  • керамзит – 0,1;
  • сталь – 58.

Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.

Понятие теплопроводности

Коэффициент теплопроводности

Показателем теплопроводности материалов служит коэффициент теплопроводности

Говоря о теплопроводности, также имеют в виду количественные  характеристики способности тел к проведению тепла. Способность того или иного вещества проводить тепло различна. Ее измеряют такой единицей, как коэффициент теплопроводности, означающем удельную теплопроводность.  В численном выражении данная характеристика равняется количеству тепла, проходящего сквозь тот или материал толщиною в 1 м и площадью 1 кв.м/сек при единичном температурном диапазоне.

Прежде предполагалось, что тепловая энергия передается в зависимости от перетекания  теплорода тел от одного к другому. Впрочем, впоследствии опыты опровергли само понятие теплорода в качестве самостоятельного вида материи. В наше время считается, что явление теплопроводности обусловлено естественным  стремлением объектов к состоянию, максимально близкому к термодинамическому равновесию, что и проявляется выравниванием их температур.

Основные характеристики утеплителей

3691c5adb39b9954808a62399f539df1.pngСоотношение качества утеплителя, в зависимости от его толщины

 

При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя: . Теплопроводность

От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
Горючесть

Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
Термоустойчивость

Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.

  • Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
  • Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
  • Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
  • Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
  • Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
  • Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
  • Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.

Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).

Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.

Что такое точка росы

На завершающем этапе вычислений потребуется правильно расположить утеплитель, коробки оконных блоков в толще стен. Это необходимо для смещения точки росы наружу, в противном случае избавиться от влаги на стеклах, внутренних стенах с началом отопительного сезона не получится.

Точкой росы называют температурный барьер, при достижении которого из теплого воздуха в эксплуатируемом помещении, имеющим высокую относительную влажность, начинает конденсироваться вода. Для увеличения ресурса силовых конструкций точку росы необходимо вывести за наружную поверхность стены, чтобы кирпич. Древесина, бетон не разрушался под действием влаги.

8c00102730c8d79c2eac151fdec20239.jpg

Кроме того, смещение точки росы внутрь слоя утеплителя приведет к увеличению расхода энергоносителя для обогрева жилища уже на третий сезон эксплуатации. Тплоизолятор намокнет, снизится его теплосопротивление.

Неправильная установка оконных блоков приводит к аналогичной ситуации – откосы будут стабильно влажными всю зиму. Поэтому, нормативы СНиП рекомендуют смещение внутренней плоскости оконного блока:

  • заподлицо с внутренней стеной в срубах, кирпичных коттеджах с кладкой в 1,5 кирпича
  • отступ от наружной плоскости стены от 12,5 см при значительной толщине кладки

Выбор конструкционных, облицовочных, теплоизоляционных материалов должен осуществляться комплексно. Паропропускная способность отдельных слоев стены должна снижаться изнутри наружу. Принцип этого метода становится понятнее на простом примере:

  • если облицевать фасады коттеджа, выложенные из газобетонных блоков, керамическим кирпичом, клинкером без вентиляционного зазора
  • влажный воздух из помещений свободно преодолеет материал стены, будет остановлен облицовкой
  • блоки начнут разрушаться в агрессивной среде, снизится ресурс здания

667eb98249f38daf9404db3b41d63451.jpg

Кроме того, замерзающая нутрии блоков вода будет расширяться, дополнительно разрушая кладку, ослабляя силовой каркас коттеджа. Проблема решается заменой керамики на сайдинг, деревянные облицовки либо созданием вентиляционного зазора, через который влага сможет отводиться воздушными массами.

Присоединяйтесь к обсуждению! Нам было бы интересно узнать вашу точку зрения, оставьте свое мнение

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

e9a21383ad037a725a4044cf27c0fd6d.jpg

Монтаж минеральной ваты

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций: .

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

ef45c1ef85b9da2bdd3a6935f83b6f54.jpg

Характеристики разных видов утеплителей

В качестве утеплителей применяются следующие виды:

  • минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

017f196d239c9a54deba492bfb24a9fd.jpeg

Данный материал относится к самым доступным и простым вариантам

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

5c3c172cbcce36e6d1cacd0bfa5c938f.jpg

Для пеноплекса характерна пористая структура

  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

Данный вариант бывает разной толщины

  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины,  лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену

Сравнение с помощью таблицы

NНаименованиеПлотностьТеппопроводностьЦена , евро за куб.м.Затраты энергии на
кг/куб.мминмаксЕвросоюзРоссияквт*ч/куб. м.
1целлюлозная вата30-700,0380,04548-9615-306
2древесноволокнистая плита150-2300,0390,052150800-1400
3древесное волокно30-500,0370,05200-25013-50
4киты из льняного волокна300,0370,04150-20021030
5пеностекло100-1500.050,07135-1681600
6перлит100-1500,050.062200-40025-30230
7пробка100-2500,0390,0530080
8конопля, пенька35-400,040.04115055
9хлопковая вата25-300,040,04120050
10овечья шерсть15-350,0350,04515055
11утиный пух25-350,0350,045150-200
12солома300-4000,080,12165
13минеральная (каменная) вата20-800.0380,04750-10030-50150-180
14стекповопокнистая вата15-650,0350,0550-10028-45180-250
15пенополистирол (безпрессовый)15-300.0350.0475028-75450
16пенополистирол экструзионный25-400,0350,04218875-90850
17пенополиуретан27-350,030,035250220-3501100

 

Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

Основные виды коэффициентов теплопередачи материала. Таблица примеры

Расчёт необходимого утеплителя, если это касается внешних стен дома исходит от регионального размещения здания. Чтобы объяснить наглядно как он происходит, в таблице ниже, приведённые цифры будут касаться Красноярского края.

Вид материалаТеплопередача,  Вт/(м*°С)Толщина стен,  ммИллюстрация
3Д панели5500dce67fac654412063bf32b995cd4a2c9.jpg
Лиственные породы деревьев с влажностью 15%0,151230c5951303ff3001b7138841b25d083963.jpg
Бетон на основе керамзита0,21630f0afcb64a3784ecf8fab50f2467478cc.jpg
Пеноблок с плотностью 1 тыс. кг/м³0,32450593ccb9982d3a485ce7854482b9391d7.jpg
Хвойные породы деревьев вдоль волокон0,3528603b47db2816691500372759c708f4b6a7.jpg
Дубовая вагонка0,4133507ce9a2154f4044d681b39a526db77a5e.jpg
Кирпичная стена на растворе из цемента и песка0,8771109e2ca4bef0749fbfdb4753f55a7591bb.jpg
Железобетонные перекрытия1,7138906de6e3098344dfa58fab9f866153099c.jpg

Каждое здание имеет разные сопротивления теплопередачи материалов. Таблица ниже, которая является выдержкой из СНиПа, ярко это демонстрирует.

Сопротивление теплопередачи по СниП

Понятие теплопроводности

В физике под теплопроводностью понимают передачу теплоты от более нагретых частиц к менее нагретым в результате их непосредственного соприкосновения. Под частицами здесь понимают атомы, молекулы или свободные электроны.

Если говорить простым языком, то теплопроводность – это способность конкретного материала пропускать тепло. Стоит отметить, что перемещение тепла будет продолжаться, пока не наступит равновесие температур.

608bd3a1085e4869f975cbcf338590c9.jpg

для разных участков зданий различны. Если говорить о частном доме, до теплопотери будут происходить:

  • через крышу — до 30 процентов;
  • через дымоходы, естественную вентиляцию и так далее — до 25 процентов;
  • через стены — до 15 процентов;
  • через пол — до 15 процентов;
  • через окна — до 15 процентов;
  • через примыкание — до 15 процентов.

Для многоквартирных домов эти показатели немного отличаются. Потери через крышу и стены будут ниже. А вот через окна будет уходить гораздо больше тепла.

Чем пригодятся эти знания на практике

В профессиональной среде строительные материалы распределяют на два типа, необходимо подчеркнуть, что такое распределение очень удобно для понимания актуальности использования тех или иных стройматериалов новичками. Предлагаются такие типы товаров:

  • конструкционные;
  • теплоизоляционные.

Конструкционная категория – это основа строительства стен, ограждений, перекрытий и прочих перегородок. С их свойствами вас ознакомит специально разработанная таблица теплопроводности, в которой в оптимальной форме изложены данные, заранее вычисленные специалистами. Согласно данному источнику в процессе создания железобетонных стен необходимо устанавливать толщину, приближенную к шести метрам. Однако, на практике совершить подобное практически нереально, ведь если придерживаться описанного правила, здание само по себе будет, пускай и прочным, но все же через чур громоздким, а это противоречит принципам функциональности и эргономичности в архитектуре.

Особенности теплопроводности готового строения

Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

c98ffc406904dac92d37647790e4da47.jpg

В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

afe3040be2fbf579ba784892d1daa7be.jpg

Утепление построек из бетона или камня повышает комфортные условия внутри здания

Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

Разновидности утепления конструкций

Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

  • при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;

4068cd6313a74989a557419be4e47aa5.jpg

Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

  • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

Особенности монтажа теплоизолирующего материала с внутренней стороны

Факторы, определяющие величину коэффициента

Конечно же, имея дело с какой-либо величиной, необходимо помнить, что существует целая система факторов, оказывающая определяющее воздействие на данное свойство. На свойство теплопроводимости материала влияют:

  • Структура. Если структура продукта неоднородна, то в нем обязательно присутствуют поры. В случае прохождения тепла сквозь пористую структуру происходит минимально возможное охлаждение. Итак, большое количество пор – залог качественного сохранения тепла.
  • Плотность. Высокие показатели данного параметра определяют достаточно тесное взаимодействие молекул. Вследствие сам процесс теплообмена, а также уравновешивание температур, которое происходит в итоге, осуществляется достаточно оперативно.
  • Влажность. Капельки жидкости, которые располагаются в порах продукта, выталкивают сухой воздух и ускоряют теплопередачу.

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

 

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Немного о понятии теплопроводности

Итак, ответ на вопрос «то такое теплопроводность?» заключается в следующем: это процесс, в рамках которого элементы, обладающие большим количеством тепла, передают его менее нагретым частям конструкции, данный обмен не прекратиться ровно до тех пор, пока общая температура сооружения полностью не уравновесится. Если проецировать данное утверждение на плоскость ограждающих систем здания, то становится очевидным, что суть теплопроводности сводится к временному отрезку, за который температура становится равной во всех элементах конструкции. Если это время достаточно продолжительное, то, соответственно, теплопроводность самих материалов, на порядок ниже.

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

Зависимость теплопроводности газобетона от плотности.

  1. Пористость — наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор — малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность — при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность — значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо — коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

b — справочная величина температурного коэффициента;

t — температура.

Вернуться к оглавлению

Что такое коэффициент теплопроводности

Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.

Коэффициент теплопроводности стены из разных материалов при разной толщине

Коэффициент теплопроводности строительных материалов таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

1216432b5b57ffd8ac29a159141ad6e1.jpgТаблица коэффициентов теплоотдачи материалов. Часть 1401abdd56de5f3bc4efaca6f480843a8.jpgПроводимость тепла материалов. Часть 2fc862cf98aef1a737487db6fbb630a11.jpgТаблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

459728caedbf8d2113c218ddbbfd527d.jpgСравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

7fbb65549622c1581330dc1dcf047948.jpgТеплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

df596231891716fcfe31d2ec93781bb0.jpgТеплоэффективность разных видов металлов. Часть 1d3fea357986d3b84ff2fa78369006c68.jpgТеплоэффективность разных видов металлов. Часть 2d75a19f444f1ea74a945754a4e177fc3.jpgТеплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

1e165bbc030f7361e575b9962f70e2ab.jpgПроводимость тепла дерева500adbafa008f10afa728bc9c53b3d4b.jpgПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят ответственные узлы зданий с последующим утеплением, когда же из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

2ae3badb4a2dd8c5a5441e05f34d0998.jpgСравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу

Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины

Таблица проводимости тепла воздушных прослоек

Шаг 2 Теория понятие

Из школьного курса физики, скорее всего, помните, что существует три вида теплопередачи:

  • Конвекция;
  • Излучение;
  • Теплопроводность.

А значит теплопроводность — это вид теплопередачи или перемещения тепловой энергии. Это связано с внутренней структурой тел. Одна молекула передает энергию другой. А теперь хотите небольшой тест?

Какой вид веществ пропускает (передает) больше всего энергии?

  • Твердые тела?
  • Жидкости?
  • Газы?

Правильно, больше всего передает энергию кристаллическая решетка твердых тел. Их молекулы находятся ближе друг к другу и поэтому могут взаимодействовать эффективнее. Самой низкой теплопроводностью обладают газы. Их молекулы находятся на наибольшем удалении друг от друга.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина – доски0,150
Древесина – фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки – засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки – набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Подбор оптимальной толщины бруса для деревянного дома

Рассмотрим более пристально вопрос оптимальной толщины бруса для постройки дома из сосны

Индивидуальность проекта диктует свои правила, и важно учесть все нюансы, что поможет избежать подводных камней и наслаждаться в будущем комфортом и уютом.

cf468a624e9056c8b4a38cc782520499.jpg

В строительной практике существует несколько видов бруса:

  1. Оцилиндрованный.
  2. Строганый. С профилем или без.
  3. Клееный.

Оцилиндрованный брус это просто-напросто бревно, с которого при помощи специального станка сняли наружный слой древесины и придали ему равномерно по всей длине округлую форму. Недостатки такой конструкции связаны с высокой продуваемостью и усадкой бревен естественной влажности.

Строганый без профиля брус изготовляется на деревообрабатывающем заводе, и имеет, как правило, прямоугольное сечение. Постройка здания из такого материала значительно проще и быстрей. Профилированный брус отличается наличием канавок, с их помощью можно точно направлять и позиционировать брус, в результате чего такая конструкция практически не продувается и требует меньшее количество отделочного материала.

Коэффициент теплопроводности клееного бруса 0,15 Вт/(м·K), а это значит, что в доме, построенном из бруса толщиной 160 мм, тепло будет держаться 15 часов с момента отключения отопления.

Мы занимаемся исключительно профилированным цельным брусом, который намного прочнее клееного и на 100% экологичен. Монолитность структуры определяет высокую прочность и сопротивление на кручение и изгиб, а отсутствие клея и однородность бруса сохраняют его высокие теплоизоляционные свойства.

Толщина бруса для дома выбирается по следующим критериям:

  • Климатические условия.
  • Размеры дома.
  • Требуемый класс энергосбережения.
  • Соответствие требованиям СНиП.

Необходимая толщина деревянной стены рассчитывается по формуле:

Sм = R Kt;

где Sм – толщина стены, R – сопротивление теплопередачи стены (показатель берут соответственно региону проживания), Kt – коэффициент теплопроводности.

Для умеренного климатического пояса сопротивление теплопередачи стены составляет 3,0 – 3,2. Коэффициент теплопроводности берем из таблички, указанной выше, (берем значение для древесины сосны поперек волокон).

Таким образом, получаем для дома, построенного из бруса сосновых пород:

Sм = 3,0*0,09 = 0,27 м

Значит оптимальной для нашего региона является стена из бруса толщиной 270 мм. Чтобы решить вопрос соответствия толщине стен дома всем указанным нормативам теплопередачи, мы внедрили технологию строительства из двойного бруса с утеплением с общей толщиной стен 300 мм, которая за счет наличия утеплителя между двумя рядами деревянного сухого бруса эквивалентна по теплопроводности толщине цельной деревянной стены 517 мм. Подробнее про эту технологию можно почитать в публикациях на нашем сайте.

View the discussion thread.

blog comments powered by DISQUS

back to top

Смотрите также…

  • Дом на две семьи: особенности постройки и выбор проекта
  • Как правильно выбрать и установить мансардные окна?

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

2830e2a617f28e39aa82b8c933ea42f8.jpg

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводности

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом. . Как видите, в определении теплопроводности нет ничего сложного и непонятного

Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

be8b50db35f0a4fdb4bef0e2964561d3.jpg

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

 

Теплопроводность при строительстве

e0104e8445072bc3dd8e2d90dff0b042.jpg

Схема сравнения теплопроводности стен из газобетона и кирпича.

При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:

  • 30-40% потерь тепла приходится на поверхность стен;
  • 20-30% — через межэтажные перекрытия и крышу;
  • около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами;
  • приблизительно 10% тепла уходит из помещения через плохо утепленные полы.

Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции. В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.

В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов. Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т.п.

Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.

Здесь можно различить:

Сравнение теплопроводности соломобетонных блоков с другими материалами.

  1. Каркасный вариант строительства — основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев. Утеплитель укладывается в межстоечное пространство. В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.
  2. Возведение стен дома из кирпича, пористых бетонных блоков, дерева — утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.

Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.

Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.

Коэффициенты теплопроводности различных веществ

 
Цветок на куске аэрогеля над горелкой Бунзена

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора[en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—6
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Что такое теплопроводность и её значимость

Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.

Движение молекул тепла

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Коэффициент теплопроводности кирпичей.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Adblock
detector