Тепловой расчёт системы отопления как грамотно сделать расчет нагрузки на систему

Содержание

Температурные режимы помещений

Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них. Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

69db86bb7f884f78227367b043b6b33d.jpgДля помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах

Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

Согласно регламенту санитарных нормативов и правил есть различие в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, а вот комнатная температура воздуха в зимний период обеспечивается системой отопления. То бишь нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате. Для нежилых помещений офисного типа площадью до 100 м2:

  • оптимальная температура воздуха 22-24°С
  • допустимое колебание 1°С

Для помещений офисного типа площадью более 100 м2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

4a2b13902345f10940269c8138d52d5c.jpgКомфортная температура помещения у каждого человека «своя». Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно — это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов. И всё же для конкретных помещений квартиры и дома имеем:

  • жилая, в том числе детская, комната 20-22°С, допуск ±2°С
  • кухня, туалет 19-21°С, допуск ±2°С
  • ванная, душевая, бассейн 24-26°С, допуск ±1°С
  • коридоры, прихожие, лестничные клетки, кладовые 16-18°С, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

— Назначение здания: жилое или промышленное.

— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

— Наличие комнат специального назначения (баня, сауна и пр.).

— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.e676ea8640d18dd30f37cd785da9a4a5.jpg

Пример теплового расчёта

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, «зимний сад» и подсобные помещения.

8d99892ebc024754edaff088e197c476.jpgФундамент из монолитной железобетонной плиты (20 см), наружные стены — бетон (25 см) со штукатуркой, крыша — перекрытия из деревянных балок, кровля — металлочерепица и минеральная вата (10 см)

Габариты здания. Высота этажа 3 метра. Малое окно фасадной и тыльной части здания 1470*1420 мм, большое окно фасада 2080*1420 мм, входные двери 2000*900 мм, двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

b0cacd5c33d7ecc9deee6260e6b1ea89.jpgОбщая ширина постройки 9.5 м2, длинна 16 м2. Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня. Для точного расчёта теплопотерь на стенах из площади внешних стен нужно вычесть площадь всех окон и дверей — это совсем другой тип материала со своим тепловым сопротивлением

Начинаем с расчёта площадей однородных материалов:

  • площадь пола 152 м2
  • площадь крыши 180 м2 (учитывая высоту чердака 1.3 метра и ширину прогона — 4 метра)
  • площадь окон 3*1.47*1.42+2.08*1.42=9.22 м2
  • площадь дверей будет равна 2*0.9+2*2*1.4=7.4 м2

Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м2. Переходим к расчёту теплопотерь на каждом материале:

  • Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт
  • Qкрыша=180*40*0.1/0.05=14400 Вт
  • Qокно=9.22*40*0.36/0.5=265.54 Вт
  • Qдвери=7.4*40*0.15/0.75=59.2 Вт

А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт. В итоге подсчитаем мощность котла:

  • Ркотла=Qпотерь*Sотаплив_комнат*К/100=
  • 19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

  • N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*1.05)/180=8.5176=9

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт. Переходим к расчёту количества теплоносителя в системе:

  • W=13.5*P=13.5*21=283.5 литров

Скорость теплоносителя будет составлять:

  • V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 литров

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

Обследование тепловизором

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к тепловизионным обследованиям строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.9989a8f85eb12144e4f0029a681f6471.jpg

Первый этап работ проходит внутри помещения

Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Второй этап – обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап – обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

Определение мощности котла

Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

Базисом системы отопления является котел: жидко или твердотопливный, электрический или газовый — на данном этапе это неважно. Котел — это центральный узел системы отопления, который генерирует тепло

Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла. Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

Ркотла=(Sпомещенияудельная)/10

где Sпомещения — общая площадь отапливаемого помещения, Руделльная — удельная мощность относительно климатических условий. Но эта формула не учитывает тепловые потери, которых достаточно в частном доме. Существует иное соотношение, которое учитывает этот параметр:

Ркотла=(Qпотерь*S)/100

где Ркотла — мощность котла (Вт), Qпотерь — потери тепла, S — отапливаемая площадь (м2).

6af5f75dc56ba53c56444fdb3f1cdf50.jpgВ большинстве систем отопления частных домов рекомендуется обязательно использовать расширительный резервуар, в котором будет храниться запас теплоносителя. Каждый частный дом нуждается в горячем водоснабжении

Дабы предусмотреть запас мощности котла с учётом подогрева воды для кухни и ванной комнаты нужно в последнюю формулу добавить коэффициент запаса К:

Ркотла=(Qпотерь*S*К)/100

где К — будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%. Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

Укрупненные показатели максимального теплового потока на отопление жилых зданий на 1м2 общей площади , Вт

Этажность жилойХарактеристика зданийРасчетная температура наружного воздуха для проектирования отопления , °С
постройкиминус 5минус 10минус 15минус 20минус 25минус 30минус 35минус 40минус 45минус 50минус 55
Для постройки до 1985 г.
1 — 2Без учета и внедрения энергосберегающих мероприятий148154160205213230234237242255271
3 — 4

5 и более

95

65

102

70

109

77

117

79

126

86

134

88

144

98

150

102

160

109

169

115

179

122

1 — 2С учетом внедрения энергосберегающих мероприятий147153160194201218222225230242257
3 — 4

5 и более

90

65

97

69

103

73

111

75

119

82

128

88

137

92

140

96

152

103

160

109

171

116

Для постройки после 1985 г.
1 — 2По новым типовым проектам145152159166173177180187194200208
3 — 4

5 и более

74

65

80

67

86

70

91

73

97

81

101

87

103

87

109

95

116

100

123

102

130

108

Примечания: 1. Энергосберегающие мероприятия обеспечиваются проведением работ по утеплению зданий при капитальных и текущих ремонтах, направленных на снижение тепловых потерь.

2. Укрупненные показатели зданий по новым типовым проектам приведены с учетом внедрения прогрессивных архитектурно-планировочных решений и применения строительных конструкций с улучшенными теплофизическими свойствами, обеспечивающими снижение тепловых потерь.

ПРИЛОЖЕНИЕ 3

Рекомендуемое

Укрупненные показатели среднего теплового потока на горячее водоснабжение

Средняя за отопительный период норма расходаНа одного человека, Вт, проживающего в здании
воды при температуре 55°С на горячее водоснабжение в сутки на 1 чел., проживающего в здании с горячим водоснабжением, лс горячим водоснабжениемс горячим водоснабжением с учетом потребления в общественных зданияхбез горячего водоснабжения с учетом потребления в общественных зданиях
85

90

105

115

247

259

305

334

320

332

376

407

73

73

73

73

ПРИЛОЖЕНИЕ 4

Рекомендуемое

Формулы для гидравлического расчета трубопроводов водяных тепловых Сетей

Определяемые величиныЕдиница измеренияФормула
Суммарные потери давления в трубопроводах на трение и в местных сопротивленияхПа
Удельные потери давления на трениеПа/м
Внутренний диаметр трубм
Приведенная длина трубопровода*l¢ = l + le
Эквивалентная длина местных сопротивлений**le = x
Коэффициент гидравлического трения:
для области квадратичного закона (при Re ³ Re¢)l =
для любых значении числа Рейнольдса (приближенно)l = 0,11
Предельное число Рейнольдса, характеризующее границы областей: переходной и квадратичного законаRe¢ = 560
* При отсутствии данных о характере и количестве местных сопротивлений на трубопроводах тепловых сетей суммарную эквивалентную длину местных сопротивлений на участке трубопроводов допускается определять умножением длины трубопровода на поправочный коэффициент а1, принимаемый по рекомендуемому приложению 5*.

 

Тепловой расчёт отопления

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Галерея изображений

Фото из

ba424095f0ac556551026aefe156c343.pngРасчеты и грамотное проектирование контуров автономного отопления необходимы для подбора оборудования, способного отапливать дом определенной площади
f619c4c4f97fc793cb3ee6049d349f3a.pngРасчеты производятся с ориентиром на самых холодный месяц в году, т.е. на период максимальной нагрузки системы
2a8b2d5d25cdb4774a316d1202828a77.pngВ расчетах учитываются потери, происходящие через оконные и дверные проемы, а также через связанную с улицей вентиляционную систему
83a608d1a4f65bc3cda605eb7073548c.pngОбязательно учитываются теплотехнические характеристики строительных конструкций, одной из задач которых является сохранение тепла
ee764eb2e1ec26cb21b9b5ea8e83a3fc.pngНезависимая отопительная система частного дома должна справляться с нагревом воздуха, поступающего через форточки в период проветривания и через открытые двери
5621a8c0d30d296100a3cebb9fff0e65.pngКотел независимой отопительной системы должен справляться с восполнением потерь тепла. Его мощность должна позволять поддерживать в доме температуру +20º С
bb55ac68d35fa8b40fde95dd4847fba0.pngПосле определения оптимального котла по мощности выбирают наиболее подходящий агрегат по КПД и эксплуатационным расходам

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении. Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери
  • определить количество и условия использования теплоносителя
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла

При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций. На основе полученных данных подобрать компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

26e17fc76d57b759f0a2d07458fd0291.jpgОтопление — это многокомпонентная система обеспечения утверждённого температурного режима в помещении/здании. Являет собой обособленную часть комплекса коммуникаций современного жилищного помещения

Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления. В результате теплового расчёта в наличии будет следующая информация:

  • число тепловых потерь, мощность котла;
  • количество и тип тепловых радиаторов для каждой комнаты отдельно;
  • гидравлические характеристики трубопровода;
  • объём, скорость теплоносителя, мощность насоса.

Тепловой расчёт — это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

Расчет остальных материалов для отопления

Для тех, кто никогда не сталкивался с монтажом системы отопления, будет очень сложно подсчитать необходимые материалы. Минимум, что нужно, это хотя бы иметь представление, как будет проводиться разводка труб, как будет обвязываться отопительный котел, и как будут подсоединяться батареи. Поэтому перед тем как начать подсчет, необходимо изучить схему работы отопительной системы. Если вы с этим не справитесь, то лучше обратиться к специалистам.

9aac2d8cd86f354a419cd669424896be.png

Схемы подключения радиаторов

Какие материалы нужны для отопительной системы? Рассмотрим их на примере двухконтурного котла. Чтобы подключить его к системе отопления дома, потребуется, как минимум, четыре шаровых крана с разъемными соединениями — по одному на каждый вход и выход двух контуров. К каждому крану по одному резьбовому переходнику, чтобы подключать его к трубопроводам. Обязательно потребуется два фильтра для механической очистки поступающей в котел воды.

Теперь переходим к обвязке радиаторов. Здесь нужны два крана (регулирующий и отсекающий), кран Маевского (для спуска воздуха), заглушка, два резьбовых переходника и два тройника для подсоединения патрубков к основной магистрали. И это комплект только на один радиатор. Чтобы подсчитать все необходимые изделия, придется умножить это на количество батарей, которые запланированы в вашем доме.

Что касается труб, то придется промерить расстояния от радиаторов до котла и полученный метраж умножить на два. Потому что многие системы работают по принципу подачи и обратки теплоносителя. Единственная проблема может возникнуть с диаметрами трубопроводов, но и здесь не все так сложно. Во многих системах используются, в основном, трубы от 20 до 32 миллиметров в диаметре. И если ваш дом по своим размерам не очень большой, то этот показатель будет достаточным.

Задача на вычисление количества теплоты

Рассмотрим задачу на вычисление количества теплоты.

Задача

В медном стакане массой  грамм находится вода объемом  литра при температуре . Какое количество теплоты необходимо передать стакану с водой, чтобы его температура стала равна ?

fbe48fe8f6d6b4a76b817a85dbf96649.jpg

Рис. 5. Иллюстрация условия задачи

Сначала запишем краткое условие (Дано) и переведем все величины в систему интернационал (СИ).

Дано:СИ
Найти: 

Решение:

Сначала определи,  какие еще величины потребуются нам для решения данной задачи. По таблице удельной теплоемкости (табл. 1) находим 5a5c5445b459a2bd3e74c36d390bb1dd.gif (удельная теплоемкость меди, так как по условию стакан медный), 39b84eacd2c21ab3fb323caa44aca3f9.gif (удельная теплоемкость воды, так как по условию в стакане находится вода). Кроме того, мы знаем, что для вычисления количества теплоты нам понадобится масса воды. По условию нам дан лишь объем. Поэтому из таблицы возьмем плотность воды: 9d2392e07009a3e55de7dcf87111c577.gif (табл. 2).

Золото

Ртуть

Свинец

Олово

Серебро

Медь

Цинк

Латунь

Железо

130

140

140

230

250

400

400

400

460

Графит

Стекло

Кирпич

Алюминий

Лед

Керосин

Эфир

Спирт

Вода

750

840

880

920

2100

2100

2350

2500

4200

Табл. 1. Удельная теплоемкость некоторых веществ,

Жидкость033161d1bb8ca537cd85c5197a772b7c.gifc6096cf922f48a6194e66b8e83c98014.gif
Ртуть

Жидкое олово ( )

Серная кислота

Мед

Вода

Масло машинное

Жидкий воздух ()

Спирт

Бензин

13 600

6800

1800

1350

1000

900

860

800

710

13,6

6,8

1,8

1,35

1

0,9

0,86

0,8

0,71

Табл. 2. Плотности некоторых жидкостей

Теперь у нас есть все необходимое для решения данной задачи.

Заметим, что итоговое количество теплоты будет состоять из суммы количества теплоты, необходимого для нагревания медного стакана и количества теплоты, необходимого для нагревания воды в нем:

Рассчитаем сначала количество теплоты, необходимое для нагревания медного стакана:

Прежде чем вычислить количество теплоты, необходимое для нагревания воды, рассчитаем массу воды по формуле, хорошо знакомой нам из 7 класса:

1f2401c1d845a4078bf12b6929429fac.gif, тогда

.

Теперь можем вычислить:

Тогда можем вычислить:

Напомним, что  означает: килоджоули. Приставка «кило» означает , то есть .

Ответ:.

Расчет размеров и количества радиаторов

Расчет радиаторов отопления в квартире тоже очень важен. И здесь придется в первую очередь определить их количество, причем для каждого помещения отдельно. Для этого за основу нужно брать не площадь, а кубатуру. Если батарей будет мало, это обеспечит нехватку тепла, а значит, в комнатах всегда будет холодно. Если радиаторов будет слишком много, то за такое тепло придется заплатить больше, приобретая большее количество топлива. Так что все должно быть в меру.

  1. Определение общего количества секций, необходимых для эффективного отопления помещения.
  2. Определение количества радиаторов.

При этом придется принять во внимание показатели теплоотдачи тех приборов, которые вы выбрали для установки в доме. Давайте рассмотрим один простой пример, который покажет, как подсчитать количество радиаторов

Альтернативное подключение радиаторов отопления в автономной системе

Для примера возьмем комнату площадью 10 квадратных метров с высотой потолков 3 метра. Есть стандартный показатель, определяющий количество тепловой энергии, которой хватает для обогрева 1 кубометра пространства. Он равен 39-41 ватт. Чтобы подсчитать объем помещения, нужно умножить площадь на высоту комнаты — в нашем примере это 30 кубических метров. Теперь эту величину умножаем на 41 ватт. Итог — 1230 ватт. Это та мощность, которая потянет объем данного помещения.

Есть еще один стандартный показатель — это количество тепловой энергии, которую может выработать 1 секция радиатора. Оно равно 200 ваттам. Теперь полученную общую мощность делим на мощность одной секции —1230/200=6,15. Это и есть необходимое количество секций, которое нужно округлить в большую сторону. В итоге получается цифра «7». Значит, в этом помещении можно устанавливать радиатор с семью секциями. Вот так все просто.

Для угловых помещений расчет чугунных батарей проводят с применением дополнительного корректирующего коэффициента, который зависит от региона. Коэффициент равен 1,1-1,3. Чтобы не ошибиться, возьмите за основу максимальный показатель. Формула получится такой — 1230х1,3/200=7,995. Округляем до 8.

Внимание! В нашем случае количество секций не такое большое. Иногда это число зашкаливает за пару десятков. Для таких случаев совет — разбивать число секций на равное количество батарей, установленных равномерно по всему зданию и в идеале под окном.

Другие способы определения количества тепла

Добавим, что также существуют и другие способы, при помощи которых можно рассчитать объем тепла, которое поступает в систему отопления. В данном случае формула не только несколько отличается от приведенных ниже, но и имеет несколько вариаций.

((V1х(Т1-Т2)+( V1- V2)х(Т2-Т1))/1000=Q

((V2х(Т1-Т2)+( V1- V2)х(Т1-Т)/1000=Q

Что же касается значений переменных, то они здесь те же, что и в предыдущем пункте данной статьи. На основании всего этого можно сделать уверенный вывод, что рассчитать тепло на отопление вполне можно своим силами. Однако при этом не стоит забывать о консультации со специализированными организациями, которые ответственны за обеспечение жилья теплом, так как их методы и принципы произведения расчетов могут отличаться, причем существенно, а процедура может состоять из другого комплекса мер.

c463295dcd52ff2509bd77c7363e8632.jpg

Если же вы намереваетесь обустроить систему «теплого пола», то подготовьтесь к тому, что процесс расчета будет более сложным, поскольку здесь учитываются не только особенности контура отопления, но и характеристик электрической сети, которая, собственно, и будет подогревать пол. Более того, организации, которые занимаются установкой подобного рода оборудования, также будут другими.

Обратите внимание! Люди нередко сталкиваются с проблемой, когда калории следует переводить в киловатты, что объясняется использованием во многих специализированных пособиях единицы измерения, которая в международной системе называется «Си». . В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850

Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий.

В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850. Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий.

Дабы избежать возможных ошибок, не стоит забывать и о том, что практически все современные тепловые счетчики работают с некоторой погрешностью, пусть и в пределах допустимого. Такую погрешность также можно рассчитать собственноручно, для чего необходимо использовать следующую формулу:

(V1- V2)/(V1+ V2)х100=E

Традиционно, теперь выясняем, что же обозначает каждое из этих переменных значений.

1. V1 – это расход рабочей жидкости в трубопроводе подачи.

2. V2 – аналогичный показатель, но уже в трубопроводе «обратки».

3. 100 – это число, посредством которого значение переводится в проценты.

4. Наконец, Е – это погрешность учетного устройства.

Согласно эксплуатационным требованиям и нормам, предельно допустимая погрешность не должна превышать 2 процентов, хотя в большинстве счетчиков она составляет где-то 1 процент.

В итоге отметим, что правильно произведенный расчет Гкал на отопление позволяет значительно сэкономить средства, затрачиваемые на обогрев помещения. На первый взгляд, процедура эта достаточно сложна, но – и вы в этом убедились лично – при наличии хорошей инструкции ничего трудного в ней нет.

На этом все. Также советуем посмотреть приведенный ниже тематический видеоматериал. Удачи в работе и, по традиции, теплых вам зим!

Видео – Как рассчитать отопление в частном доме

Удельная теплоемкость вещества. Расчет количества теплоты

Теория > Физика 8 класс > Тепловые явления

Количество теплоты – это энергия, которую тело теряет или приобретает при теплопередаче. Это понятно и из названия. При остывании тело будет терять некое количество теплоты, а при нагревании – поглощать.Количество теплоты зависит:
1) от массы, чем больше масса тела, тем большее количество теплоты надо затратить на изменение его температуры на один градус.
2) от того вещества, из которого оно состоит, то есть от рода вещества.
3) от температуры, так как разность температур тела до и после теплопередачи также важна для физических расчетов.

Удельная теплоемкость вещества — это величина показывает, какое количество теплоты надо передать телу массой один килограмм, чтобы его температура увеличилась на один градус Цельсия. Измеряется в Дж/(кг * ˚С). Существует эта величина не по собственной прихоти, а по причине разности свойств различных веществ.Обозначается удельная теплоемкость буквой c и применяется в формуле для расчета количества теплоты.

Удельная теплоемкость воды примерно в десять раз выше удельной теплоемкости железа, поэтому кастрюля нагреется в десять раз быстрее воды в ней. Любопытно, что удельная теплоемкость льда в два раза меньше теплоемкости воды. Поэтому лед будет нагреваться в два раза быстрее воды. Растопить лед проще, чем нагреть воду.

Расчет количества теплоты:
Исходя из всего вышесказанного, мы можем определить количество теплоты формулой:
Q=cm(t2 — t1 ) ,
где Q – количество теплоты,
m – масса тела,
(t2 — t1 ) – разность между начальной и конечной температурами тела

Формула удельной теплоемкости: c = Q / m*(t2 — t1 )
По этой формуле можно рассчитать количество тепла, которое нам необходимо, чтобы нагреть конкретное тело до определенной температуры.
Удельную теплоемкость различных веществ можно найти из соответствующих таблиц.
Также из этой формулы можно выразить:
• m = Q / c*(t2 — t1 ) — массу тела
• t1 = t2 — (Q / c*m) — начальную температуру тела
• t2 = t1 + (Q / c*m) — конечную температуру тела
• Δt =(t2 — t1 ) = (Q / c*m) — разницу температур (дельта t)

Удельная теплоемкость твердых тел и жидкостей – величина постоянная, известная, легко рассчитываемая. А что касается удельной теплоемкости газов, то величина эта очень различна в разных ситуациях. Возьмем для примера воздух. Удельная теплоемкость воздуха зависит от состава, влажности, атмосферного давления.
При этом, при увеличении температуры, газ увеличивается в объеме, и нам надо ввести еще одно значение – постоянного или переменного объема, что тоже повлияет на теплоемкость. Поэтому при расчетах количества теплоты для воздуха и других газов пользуются специальными графиками величин удельной теплоемкости газов в зависимости от различных факторов и условий.

                                                                               ПРИМЕРЫ ЗАДАЧ
 Задача № 1. На сколько изменяется внутренняя энергия Царь-пушки массой 40 т при максимальном зарегистрированном в Москве перепаде температуры от + 36 °С до — 42,2 °С? Удельная теплоемкость металла 0,45 кДж/(кг • К).
Дано:m = 40 тt1 = — 42,2 °Сt2 = + 36 °Сс = 0,45 кДж/(кг • К)СИ40000 кг450 Дж / (кг•°С)Решение:Q1= с•m• t1 = 450 Дж / (кг•°С)*40000 кг*- 42,2 °С  = -759600000 Дж =  — 759,6 МДжQ2= с•m• t2 =450 Дж / (кг•°С)*40000 кг*36 °С = 648000000Дж = 648 МДжQ = Q2 — Q1 =648МДж  +759,6 МДж = 1408 МДж  Ответ: на 1408 МДж.
Q =?
 Задача № 2. До какой температуры раскаляется почва в Узбекистане, если внутренняя энергия каждого кубометра изменяется при этом на 93,744 МДж? Начальная температура почвы 17 °С, плотность грунта 1800 кг/м3, его удельная теплоемкость 0,84 кДж/(кг • К).
Дано:V = 1 м 3ρ = 1800 кг/м3t1 = 17 °С
с = 0,84 кДж/(кг • К)
Q = 93,744 МДж
Решение:Q= с•m• (t2 — t1)m = V *ρQ= с•V •ρ• (t2 — t1) 9374400Дж = 840 Дж/(кг • К)*1 м 3*1800 кг/м3(t2 — 17 °С)93744000 = 1512000(t2 — 17)93744000 = 1512000t2 — 2570400011944800 = 1512000t2t2 = 79 °С  Ответ: 79 °С
t2 = ?
Задача № 3 Какова масса куска янтаря, хранящегося в Паланге, если при изменении температуры от 5 до 18 °С его энергия увеличилась на 93,6 кДж?
Дано:t1 = 18°С
t2 = 5 °С
с = 2 кДж/(кг • К)
Q = 93,6 кДж
Решение:Q= с•m• (t2 — t1) 93600 = 2000 * m *(18 — 5) m = 93600/26000 = 3,6 кг  Ответ: 3,6 кг
m = ?

Теория | Калькуляторы | ГДЗ | Таблицы и знаки | Переменка |

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

eb05243786c46d7c4d9df4a181bc71fb.jpg

1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1.

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3Q2.

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4Q3.

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до  температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Что собой представляет Гкал

Начать следует со смежного определения. Под калорией подразумевается определенное количество энергии, которое требуется для нагрева одного грамма воды до одного градуса по Цельсию (в условиях атмосферного давления, разумеется). И ввиду того, что с точки зрения расходов на отопление, скажем, дома, одна калория – это мизерная величина, то для расчетов в большинстве случаев применяются гигакалории (или сокращенно Гкал), соответствующие одному миллиарду калорий. С этим определились, движемся дальше.

Применение данной величины регламентируется соответствующим документом Министерства топлива и энергетики, изданным еще в 1995-м году.

Обратите внимание! В среднем норматив потребления в России на один квадратный метр равен 0,0342 Гкал за месяц. Безусловно, эта цифра может меняться для разных регионов, поскольку все зависит от климатических условий

Итак, что же собой представляет гигакалория, если «трансформировать» ее в более привычные для нас величины? Смотрите сами.

1. Одна гигакалория равна примерно 1 162,2 киловатт-часам.

2. Одной гигакалории энергии хватит для нагрева тысячи тонн воды до +1°С.

1b4898fc1c085d68959fa6aae63c65d1.jpg

Проектирование тепловых сетей

    1. Определение расчетных расходов теплоносителя в тепловой сети

Расчетный расход сетевой воды на отопление и вентиляцию для определения диаметров труб водяных тепловых сетей при качественном регулировании отпуска теплоты рассчитывается по формулам:

(4.1.1)

(4.1.2)

где – расчетные температуры сетевой воды в подающем и обратном трубопроводах при tо , °С;

– расчетные температуры сетевой воды в подающем и обратном трубопроводах при tнв , °С;

– максимальные тепловые потоки на отопление и вентиляцию при tо и tнв , кВт;

– удельная теплоемкость воды, с = 4,187 кДж/(кг*°С).

Расчётные расходы сетевой воды на горячее водоснабжение зависят от схемы присоединения водоподогревателей. В закрытой системе теплоснабжения присоединение водоподогревателей горячего водоснабжения, установленных в местных тепловых пунктах, принимают в зависимости от соотношения максимальных тепловых нагрузок на горячее водоснабжение и отопление:

Таблица 4.1.1 – Выбор схемы присоединения водоподогревателей ГВС

№№ зданий по плануНаименование зданийМаксимальный тепловой поток на горячее водоснабжение, Qh max, ВтТепловой поток на отопление для N зданий, Qо max, ВтQh max/Qо maxКритерий выбора схемы присоединения водоподогревателей горячего водоснабженияВыбранная схема присоединения водоподогревателей горячего водоснабжения
1школа на 900 учащихся282 623475 1140,590,2÷1,0двухступенчатая
4детский сад83 740103 4040,810,2÷1,0двухступенчатая
11, 12магазинздание не снабжается горячей водой
2, 3, 5семиэтажный восьмиподъездный жилой дом1 875 7761 388 0161,35>1,0одноступенчатая параллельная
6, 7, 8пятиэтажный шестиподъездный жилой дом1 004 880941 8681,07>1,0одноступенчатая параллельная
9, 10пятиэтажный четырехподъездный жилой дом446 613508 9390,880,2÷1,0двухступенчатая

Средние расходы воды при параллельной и двухступенчатой схемах подключения водоподогревателей определяют по формулам 4.1.3 и 4.1.4 соответственно:

(4.1.3)

(4.1.4)

где – температура воды в подающем трубопроводе в точке излома графика;

– температура воды в обратном трубопроводе;

– температура воды после параллельно включенного подогревателя в точке излома графика, °С, принимаем для расчетов ;

– температура водопроводной воды после первой ступени подогрева при двухступенчатых схемах присоединения водоподогревателей, °С;

– температура водопроводной воды в отопительных период, °С, принимаю для расчетов +5 °С.

Суммарный расчетный расход сетевой воды в двухтрубных тепловых сетях определяется как сумма расходов по отдельным видам теплопотребления:

(4.1.5)

где – коэффициент запаса, учитывающий долю среднего расхода на горячее водоснабжение, принимаем при отсутствии баков-аккумуляторов для системы с суммарным тепловым потоком менее 100 МВт.

Результаты расчета приведены в таблице 4.1.2

Таблица 4.1.2 – Определение расчетных расходов теплоты

№№ зданий по плануНаименование зданийТепловые потоки, МВтРасчетные расходы теплоносителя, т/чСуммарный расчетный расход сетевой воды, т/ч
Qо maxQv maxQhmGо maxGv maxGhm
1школа на 900 учащихся0,480,070,125,1061,051,277,672
4детский сад на 200 детей0,100,020,031,1110,330,381,890
11, 12магазин0,060,040,000,6150,550,001,162
2, 3, 5семиэтажный восьмиподъездный жилой дом1,390,000,7814,9180,0016,8035,078
6, 7, 8пятиэтажный шестиподъездный жилой дом0,940,000,4210,1230,009,0020,923
9, 10пятиэтажный четырехподъездный жилой дом0,510,000,195,4700,002,007,870
ΣQ, МВт5,14ΣG, т/ч68,71
Gd, т/ч74,59

studfiles.net

  • Бани из бруса проекты и фото
  • Фильтр для бассейна дачного
  • Откуда в системе отопления берется воздух
  • Павильон сдвижной для бассейна
  • Пленка для теплицы какая лучше
  • Саморезы что такое
  • Кормушки своими руками для птиц из бутылок
  • Ящик для бутылок своими руками
  • Вазоны из цемента для дачи своими руками
  • Размер пеноблока для перегородок

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является «стремление» создания температурного равновесия между двумя термодинамическими системами.

Например, первая система — окружающая среда с температурой -20°С, вторая система — здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

1f2db528c4d6c8b0977e61737f36fffb.jpgОднозначно можно сказать, что температура окружающей среды зависит от широты на которой расположен частный дом. А разница температур влияет на количество утечек тепла от здания

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так «заметен» в сравнении с частным домом, поскольку квартира находиться внутри здания и «соседствует» с другими квартирами. В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени «уходит» тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Итак, объём утечек тепла от здания вычисляется по следующей формуле:

Q=Qпол+Qстена+Qокно+Qкрыша+Qдверь+…+Qi

где Qi — объём теплопотерь от однородного вида оболочки здания. Каждая составляющая формулы рассчитывается по формуле:

Q=S*∆T/R

где Q – тепловые утечки (Ватты), S – площадь конкретного типа конструкции (м2), ∆T – разница температур воздуха окружающей среды и внутри помещения (°C), R – тепловое сопротивление определённого типа конструкции (м2*°C/Вт).

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц. Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

R=d/k

где R – тепловое сопротивление ((м2*К)/Вт), k – коэффициент теплопроводности материала (Вт/(м2*К)), d – толщина этого материала (м).

1b4732cf61494f5799157f3746e75669.jpgВ старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Если утеплить чердачное пространство и крышу, то общие потери тепла от дома можно значительно уменьшить

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Расчет отопительного котла

Это самый простой из расчетов, потому что мощность отопительного котла зависит от площади помещений, которые он будет отапливать. Для этого берут соотношение — 1 киловатт тепловой энергии обогревает 10 квадратных метров площади при высоте потолков не выше 3-х метров. Берете общую площадь дома, делите на 10 и получаете мощность отопительного котла.

Эту упрощенную формулу можно использовать только для одноконтурных устройств. Для двухконтурного агрегата расчет придется проводить по-другому. Например, дом площадью 240 квадратных метров не получится обогреть настенным котлом мощностью 24 киловатта. Один отопительный контур будет работать на обогрев помещений, а второй — на подогрев воды для бытовых нужд. Поэтому мощность придется разделить на 2, и получится, что таким котлом можно отапливать дом площадью не более 120 квадратных метров.

Однако специалисты рекомендуют приобретать котлы с большей мощностью для создания небольшого запаса — 10-15% бывает достаточно. Правда, многое будет зависеть от высоты потолков.

С одноконтурным прибором все гораздо проще, но и здесь необходим небольшой задел. Например, выбирая одноконтурный котел мощностью 24 киловатта, можно гарантировать, что он спокойно обогреет дом площадью 200 квадратных метров при высоте потолков 2,5-2,6 метров. Если потолки в доме 3 метра, то прибор сможет обогреть помещения общей площадью 170 квадратов. Вот такие манипуляции.

Тепловые счетчики

А теперь выясним, какая информация нужна для того, чтобы рассчитать отопление. Легко догадаться, что это за информация.

1. Температура рабочей жидкости на выходе/входе конкретного участка магистрали.

2. Расход рабочей жидкости, которая проходит через приборы отопления.

Расход определяется посредством применения устройств теплового учета, то есть счетчиков. Такие могут быть двух типов, ознакомимся с ними.

Крыльчатые счетчики

Такие приборы предназначаются не только для отопительных систем, но и для горячего водоснабжения. Единственным их отличием от тех счетчиков, которые применяются для холодной воды, является материал, из которого выполняется крыльчатка – в данном случае он более устойчив к повышенным температурам.

85bc035b8fc5a5b3831df2e186cab86d.jpg

Что касается механизма работы, то он практически тот же:

  • из-за циркуляции рабочей жидкости крыльчатка начинает вращаться;
  • вращение крыльчатки передается учетному механизму;
  • передача осуществляется без непосредственного взаимодействия, а при помощи перманентного магнита.

Невзирая на то, что конструкция таких счетчиков предельно проста, порог срабатывания у них достаточно низкий, более того, имеет место и надежная защита от искажения показаний: малейшие попытки торможения крыльчатки посредством наружного магнитного поля пресекаются благодаря антимагнитному экрану.

Приборы с регистратором перепадов

Такие приборы функционируют на основе закона Бернулли, утверждающего, что скорость движения потока газа либо жидкости обратно пропорциональна его статическому движению. Но каким образом это гидродинамическое свойство применимо к расчетам расхода рабочей жидкости? Очень просто – нужно всего лишь преградить ей путь посредством подпорной шайбы. При этом скорость падения давления на этой шайбе будет обратно пропорциональной скорости движущегося потока. И если давление будет регистрироваться сразу двумя датчиками, то можно с легкостью определять расход, причем в режиме реального времени.

479020eefb9ce27bead5e5a8b9998ff2.jpg

Обратите внимание! Конструкция счетчика подразумевает наличие электроники. Преимущественное большинство таких современных моделей предоставляет не только сухую информацию (температура рабочей жидкости, ее расход), но и определяет фактическое использование тепловой энергии

Модуль управления здесь оснащен портом для подключения к ПК и может настраиваться вручную.

У многих читателей наверняка появится закономерный вопрос: а как быть, если речь идет не о закрытой отопительной системе, а об открытой, в которой возможен отбор для горячего водоснабжения? Как в таком случае совершать расчет Гкал на отопление? Ответ вполне очевиден: здесь датчики напора (равно как и подпорные шайбы) ставятся одновременно и на подачу, и на «обратку». И разница в расходе рабочей жидкости будет свидетельствовать о том количестве нагретой воды, которая была использована для бытовых нужд.

7c4300a454195b5ee5a1de74600b57af.jpg

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий