Принцип работы термопары описание, устройство, схема

Описание и характеристики

Термопара — это прибор, состоящий из двух различных проводников, которые соединяются в одной или нескольких точках компенсационными проводами. Когда на одном конце провода происходит измерение температуры, на другом создается напряжение определенного значения и силы. Это устройство используется для контроля температуры, а также для преобразования температуры в электрический ток.

Стоит термодатчик совсем недорого. Этот прибор вполне стандартный и измеряет большой диапазон температур. Единственным минусом в работе элемента является неточность, которая может составлять до 1 °C, а это немало для таких значений.

Сделать термопару в домашних условиях не составит труда. Необходимо только помнить, что эти устройства создаются из специальных сплавов, поэтому прослеживается предсказуемая и стойкая зависимость между напряжением и температурой.

Датчики бывают разных типов. Они классифицируются по типу используемых металлов для сплава:

  1. хромель — алюмелевые;
  2. платинородий — платиновые.

От состава зависит и среда применения, ведь такие контроллеры используют как в науке и промышленности, так и в домашних условиях — для котлов, колонок, духовых шкафов.

Конструкции термопар

Существует две основные разновидности конструкций термопар.

  • С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.

  • Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.

b490b7681225c2bb06f95700b4d7b3c6.jpg

Типы термопары

В определенных условиях, легко создается термопара своими руками, но необходимо знать, какие бывают виды данных устройств, в частности, чем отличаются модели ТХА, ТХК, ТПП, ТВР, ТЖК, ТПР, ТСП. Они распределятся как:

  1. Тип E

Сплав хромель – константан. Данное соединение имеет высокую производительность (68 мкВ / ° C), что делает его подходящим для криогенного использования. Кроме того, он является немагнитным. Диапазон температур составляет от -50 ° С до +740 ° С.

  1. Тип J

Это железо – константан. Здесь область работы немного уже от -40 ° C до +750 ° C, но выше чувствительность – около 50 мкВ / ° С.

  1. Тип K

Это термопары, которые создан из сплав хромель алюминий. Они являются наиболее распространенными устройствами общего назначения с чувствительностью около 41 мкВ / ° C. Эти приборы могут работать в пределах -200 ° С до 1350 ° C / -330 ° F до +2460 ° F.

dd013519d0e7267bdec50882c93228f1.jpgФото – термопары хромель-алюмель

Термопары тип K могут быть использованы включительно до 1260 ° С в неокисляющих или инертных атмосферах без появления быстрого старения. В незначительно окислительной среде (например, углекислом газе) между 800 ° C-1050 ° С, проволока из хромеля быстро разъедается и становится намагниченной, также это явление известное как «зелена гниль». Это вызывает большое и постоянное ухудшение работы регулятора.

  1. Тип M

Класс термопар M (Ni / Mo 82% / 18% – Ni / Co 99,2% / 0,8%, по весу) используется в вакуумных печах. Максимальная температура составляет до 1400 ° С.

  1. Тип N

Никросил-нисиловые термопары являются подходящими для использования между -270 ° C и 1300 ° C, вследствие его стабильности и стойкости к окислению. Чувствительность около 39 мкВ / °С.

  1. Сплавы родия и платины

Платиновые термопары типа B, R, и S являются одними из самых стабильных термопар, но имеют более низкую термоЭДС, чем другие типы, всего около 10 мкВ / ° С. Класс B, R, и S обычно применяется только для измерения высоких температур из-за их высокой стоимости и низкой чувствительности.

  1. Тип B, S, C

Обозначение B у термопары означает, что в её состав входят такие металлы, как Pt / Rh 70% / 30% – Pt / Rh 94% / 6%, подходят для использования в среде до 1800 ° C. Класс S применяются до 1600 градусов, в то время как C до 1500.

  1. Сплавы рения и вольфрама

Эти термопары хорошо подходят для измерения очень высоких температур. Типичная область их применения – то автоматика промышленных процессов, производство водорода, вакуумные печи (особенно перед выходом обрабатываемого материала). Но ими нельзя работать в кислотных средах.

Применение термопар

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры[2]. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения

e6941d1f368090cea4dd7725bd595a8c.jpg

Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения[3]. Упоминания об этом их применении относятся к началу 1830-х годов[4]. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу[5].

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Достоинства и недостатки

Термопары обладают многими достоинствами в сравнении с аналогичными термоэлектрическими датчиками температуры. К плюсам, например, относят:

  • простая конструкция;
  • прочность;
  • надёжность;
  • универсальность;
  • низкая стоимость;
  • можно пользоваться в самых разных условиях;
  • можно измерять самые разные температуры;
  • точность произведенных измерений.

Однако, как и любой другой прибор, эти датчики имеют свои недостатки:

  • довольно низкое напряжение на выходе;
  • нелинейность.

Измерение температур с использованием термопар, изобретенное еще в XIX веке, достаточно широко применяется в современном производстве. Кроме того, существуют такие сферы деятельности, где применение этих датчиков становится порой единственным возможным способом получения необходимых измерений.

Бегущая термопара и ее применение

Существует отдельная разновидность данного устройства, именуемая «бегущей». Принцип действия бегущей термопары мы сейчас рассмотрим более подробно.

Эта конструкция применяется в основном для определения температуры стальной заготовки при ее обработке на токарных, фрезерных и иных подобных станках.

e5a0c10e903ffde96882591f8d366c55.jpg

Следует отметить, что в данном случае возможно использование и обычной термопары, однако, если процесс изготовления требует высокой точности температурного режима, бегущую термопару трудно переоценить.

При применении данного метода в заготовку заранее запаивают ее контактные элементы. Затем, в процессе обработки болванки, данные контакты постоянно подвергаются воздействию резца или иного рабочего инструмента станка, в результате чего спай (который является главным элементом при снятии температурных показателей) как бы «бежит» по контактам.

Этот эффект повсеместно применяется в металлообрабатывающей промышленности.

Технологические особенности конструкций термопар

При изготовлении рабочей схемы термопары производится спайка двух металлических контактов, которые, как известно, изготовлены из разных материалов. Место соединения носит название «спай».

Следует отметить, что делать данное соединение с помощью спайки необязательно. Достаточно просто скрутить вместе два контакта. Но такой не будет обладать достаточным уровнем надежности, а также может давать погрешности при снятии температурных показателей.

Если необходимо измерение высоких температур, спайка металлов заменяется на их сварку. Это связано с тем, что в большинстве случаев припой, применяемый при соединении, имеет низкую температуру плавления и разрушается при превышении ее уровня.

Схемы, при изготовлении которых была применена сварка, выдерживают более широкий диапазон температуры. Но и этот способ соединения имеет свои недостатки. Внутренняя структура металла при воздействии высокой температуры в процессе сваривания может измениться, что повлияет на качество получаемых данных.

Кроме того, следует контролировать состояние контактов термопары в процессе ее эксплуатации. Так, возможно изменение характеристик металлов в схеме вследствие воздействия агрессивной окружающей среды. Может произойти окисление либо взаимная диффузия материалов. В подобной ситуации следует заменить рабочую схему термопары.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный.
В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопар[7]. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0,0025 Г—T имела бы точность В±2,5 В°C в 1000 В°C.

Тип термопары IEC (МЭК)Материал положительного электродаМатериал отрицательного электродаТемп. коэффициент, μV/°CТемпературный диапазон °C (длительно)Температурный диапазон °C (кратковременно)Класс точности 1 (°C)Класс точности 2 (°C) IEC (МЭК)

Цветовая маркировка

K Хромель

Cr—Ni

Алюмель

Ni—Al

40…410 до +1100−180 до +1300±1,5 от −40 °C до 375 °C±0,004×T от 375 °C до 1000 °C±2,5 от −40 °C до 333 °C±0,0075×T от 333 °C до 1200 °CЗелёный-белый
J Железо

Fe

Константан

Cu—Ni

55.20 до +700−180 до +800±1,5 от −40 °C до 375 °C±0,004×T от 375 °C до 750 °C±2,5 от −40 °C до 333 °C±0,T от 333 °C до 750 °CЧёрный-белый
NНикросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100−270 до +1300±1,5 от −40 °C до 375 °C±0,004×T от 375 °C до 1000 °C±2,5 от −40 °C до 333 °C±0,0075×T от 333 °C до 1200 °CСиреневый-белый
RПлатинородий

Pt—Rh

(13 % Rh)

Платина

Pt

0 до +1600−50 до +1700±1,0 от 0 °C до 1100 °C±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C±1,5 от 0 °C до 600 °C±0,0025×T от 600 °C до 1600 °CОранжевый-белый
SПлатинородий

Pt—Rh (10 % Rh)

Платина

Pt

0 до 1600−50 до +1750±1,0 от 0 °C до 1100 °C±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C±1,5 от 0 °C до 600 °C±0,0025×T от 600 °C до 1600 °CОранжевый-белый
BПлатинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +17000 до +1820±0,0025×T от 600 °C до 1700 °CОтсутствует
T Медь

Cu

Константан

Cu—Ni

−185 до +300−250 до +400±0,5 от −40 °C до 125 °C±0,004×T от 125 °C до 350 °C±1,0 от −40 °C до 133 °C±0,0075×T от 133 °C до 350 °CКоричневый-белый
E Хромель

Cr—Ni

Cu—Ni

680 до +800−40 до +900±1,5 от −40 °C до 375 °C±0,004×T от 375 °C до 800 °C±2,5 от −40 °C до 333 °C±0,0075×T от 333 °C до 900 °CФиолетовый-белый

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров — номинальные статические характеристики преобразования (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

  • платинородий-платиновые — ТПП13 — Тип R
  • платинородий-платиновые — ТПП10 — Тип S
  • платинородий-платинородиевые — ТПР — Тип B
  • железо-константановые (железо-медьникелевые) ТЖК — Тип J
  • медь-константановые (медь-медьникелевые) ТМКн — Тип Т
  • нихросил-нисиловые (никельхромникель-никелькремниевые) ТНН — Тип N.
  • хромель-алюмелевые — ТХА — Тип K
  • хромель-константановые ТХКн — Тип E
  • хромель-копелевые — ТХК — Тип L
  • медь-копелевые — ТМК — Тип М
  • сильх-силиновые — ТСС — Тип I
  • вольфрам и рений — вольфрамрениевые — ТВР — Тип А-1, А-2, А-3

Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ.

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

7ad098af48ac8da306698998275b1213.jpgПотенциометр

Общие понятия и конструкция

Термопара ГОСТ Р 8.585-2001 представляет собой устройство для измерения температуры, которое состоит из двух разнородных проводников, контактирующих друг с другом в нескольких или одной точке, которые иногда соединяют компенсационные провода. В тот момент, когда на одном из таких участков изменяется температура, создается определенное напряжение. Термопары часто используются для контроля температур разнообразных сред, а также для конвертации температуры в энергию, в частности, в электрический ток.

85b97c3afc25432e970fb578cb7ff167.jpgВиды термопар

Коммерческий преобразователь стоит доступно, является полностью взаимозаменяемым, оснащен стандартными разъемами и может измерять широкий диапазон температур. В отличие от большинства других методов измерения градусов, термопары с автономным питанием не требуют внешнего способа возбуждения. Основным ограничением при работе термопар является точность; вполне возможны ошибки вплоть до одного градуса по Цельсию, что достаточно много для стандартного измерителя или контроллера.

58b19ba66803c0c5f5b616999a081ae0.jpgФото – Вид термопары

Основные параметры прибора зависят от материала. Любой узел из разнородных металлов будет производить электрический потенциал, относящийся к определенной температуре и образующий сопротивление. Термопары для практического измерения температуры созданы из конкретных сплавов, имеющих предсказуемую и повторяемую зависимость между температурой и напряжением. Различные сплавы используются для различных температурных диапазонов, если Вы хотите купить термопару, то предварительно обязательно проконсультируйтесь с продавцом-консультантом выбранной компании.

Существуют разные типы термопары, очень важно обращать внимание также на стойкость к коррозии. Если точка измерения находится далеко от измерительного прибора, промежуточное соединение может быть выполнено путем расширения проводов, которые являются менее дорогостоящими, чем материалы, используемые, чтобы сделать датчик

Приспособления обычно стандартизованы по отношению к эталонной температуре 0 градусов по Цельсию; производственные компании часто используют электронные методы компенсации холодного спая для корректировки изменения температуры на клеммах прибора. Электронные приборы могут также компенсировать прочие различные характеристики термопары, тем самым улучшить точность и достоверность измерений.

457105f308a5797901b99b5b699b9f89.jpgФото – Термопара для котла

Применение термопары достаточно широкое: их используют в науке и промышленности; приспособлениями можно осуществлять измерение температуры для печей, газовой колонки, спая, газовых турбин выхлопных газов, дизельных двигателей и других промышленных процессов. Данные устройства термосопротивления также используются в частных домах, офисах и предприятий. Также они могут заменить термостаты в АОГВ и прочих газовых отопительных приборах.

принцип действия термопары

Согласно правилу Зеебека, если проводник подвергается воздействию, его сопротивление и напряжение изменяется – это называется термоэлектрический эффект или эффект Зеебека. Любая попытка измерить это напряжение обязательно включает подключение другого проводника к «горячему» концу термопары. Этот дополнительный гибкий провод, потом также может стать градиентом температуры, а также разработать собственное напряжение, которое будет противостоять текущему. Величина этой разности напрямую зависит от металла, который используется при работе. Использование разнородных сплавов для замыкания цепи создает новую цепь, в которой два конца могут генерировать различные напряжения, в результате чего образуется небольшое различие в напряжении, доступные для измерения. Это различие увеличивается с ростом температуры и составляет от 1 до 70 микровольт на градус Цельсия (мкВ / ° C) для стандартных сочетаний металлов.

81b2b9b6dbea2c45c5b8376ac8e23db7.jpgФото – Принцип работы термопары

Напряжение не генерируется на стыке двух металлов термопары, а вдоль этой части длины двух разнородных металлов, подверженного градиента температуры. Поскольку обе длины разнородных металлов испытывают один и тот же температурный градиент, конечный результат является результатом измерения разности температур между термопарой и спаем. Пока контакт находится в постоянной температуре, это не имеет значения, каким образом узел изготовлен (это может быть пайка, точечная сварка, обжим и т.д.), однако это имеет решающее значение для точности. Если соединение выполнено недостаточно качественно, то получится более серьезная погрешность, чем градус. Особенно в высокой точности нуждается мультиметр с термопарой, разнообразные производственные датчики, контроллеры высоких температур для газовой печи и т.д.

12b07b904510b48e09bb0ee0e4071952.jpgФото – Термопара арбат

Видео: Измерение температуры с  помощью термопары

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

0b1357a6b832d0412474f9cce1465cf8.jpgТермопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

d50aaaef4be799faf1f10675ed0a4321.jpgЦепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

375c8895d113ff4c4ee080ecd0229760.jpgВоздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

cd52f5a2b8f8c4c8467fd8daff9bd898.jpgЦепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

23f2506a92d4794da46dc45a60b4a099.jpgРабочий спай и холодный спай

Изготовление термодатчика

Для изготовления термопары своими руками необходимо приобрести проволоку из подходящих материалов

Здесь важное значение имеет диаметр, так как от него зависит погрешность при измерении температуры. Рекомендуется брать проволоку меньшего диаметра, особенно если исследоваться будут объекты небольших размеров

Материал зависит от диапазона температур, с которым предполагается работа. Наиболее распространенные варианты: хромель-алюмель, медь-константан. Само изготовление заключается в создании соединения, сплава двух проволок. Зачастую для этого используется какой-то источник напряжения (к примеру, автомобильный аккумулятор или трансформатор).

Дальнейшие этапы работы таковы:

  1. свободные концы скрученной проволоки подключают к одному из полюсов источника напряжения;
  2. вывод подсоединяется к другому из полюсов, который дополнительно соединен еще и с графитным карандашом.

7147b796d4f6b3e5c21370fe56490d85.jpgПри возникновении электрической дуги возникает соединение проволок термопары. При этом напряжение для соединения проводов подбирается путем эксперимента. Как правило, оптимальное значение 40−50 В, но оно может быть меньше, так как зависит от материалов и длины изделия.

Еще один главный момент — соблюдение техники безопасности. Очень важно не использовать слишком высокое напряжение и не касаться оголенных проводов. Лучше заизолировать их специальной лентой или закрыть керамической трубкой.

Это самый простой и доступный способ изготовления термопары для мультиметра своими руками. Иногда проволоки для термопар спаивают с помощью паяльника. Но тогда придется дополнительно приобрести специальный припой и придерживаться определенных температур в работе.

Основные операции поверки термопар

Наименование
операции

Обязательность
проведения операции при

Выпуске
из производства

Выпуске
после ремонта

Эксплуатации
и хранении

1.
Внешний осмотр

2. Проверка
электрической прочности и сопротивления
изоляции

3. Проверка
стабильности

4. Определение
т.э.д.с. термопреобразователей и
чувствительных элементов при заданных
значениях температуры

Да

Да

Да

Да

Да

Да

Да

Да

Да

Нет

Нет

Да

Схема установки для поверки
термопар приведена на рисунке 1.

При проведении поверки термопар должны
быть соблюдены следующие условия:

  • Термопары разборных
    конструкций необходимо вынуть из
    защитной арматуры. К поверке допускаются
    термопары разборных конструкций в
    защитной арматуре (чехле) и термопары
    неразборных конструкций, если в условиях
    поверки погрешность от теплоотвода не
    превышает 0,3 % доп. (Эти требования должны
    быть указаны в нормативно-технической
    документации на конкретный тип
    термопары);

  • Температура воздуха в помещении,
    относительная влажность и барометрическое
    давление должны соответствовать нормам,
    установленным для них нормативно-техническими
    документами (далее НТД) по эксплуатации
    поверочной аппаратуры;

  • Изменение температуры
    воздуха в помещении во время проведения
    поверки не должно быть более ±0,5 ˚С в
    течении 1 часа;

  • Вибрации в помещении не
    должны вызывать отклонений указателя
    наиболее чувствительного средства
    измерений более чем на ±0,25 % цены
    наименьшего деления его шкалы;

  • Питание печей должно
    осуществляться стабилизированным
    напряжением, изменения которого не
    должны превышать 1 %;

  • В помещении не должно быть пыли, дыма,
    газов и паров, вызывающих коррозию
    деталей приборов, используемых при
    поверке, или загрязнение элементов
    термопреобразователей;

  • Приборы для поверки должны быть удалены
    не менее, чем на 1 от окон, дверей,
    радиаторов отопления и других устройств,
    выделяющих тепло, а так же должны быть
    защищены от прямых солнечных лучей;

  • Части аппаратуры, используемой
    при поверке и снабженной зажимом
    «земля», должны быть подключены к
    контуру заземления. Сопротивление
    заземления должно быть не более 4 Ом;

  • Корпуса печей, наружные
    стенки которых нагреваются при работе
    до температуры выше 70 ˚С, должны быть
    ограждены жесткой сеткой из проволоки;

  • Аппаратура поверки должна обеспечивать
    сходимость результатов измерений для
    любого типа поверяемого преобразователя.

4e400c86d546a444760ce51a9e40ecdf.png

Рисунок 1 – Схема установки для поверки
термопар

1 – автотрансформатор;

2 – амперметр
(миллиамперметр);

3 – муфельная печь
трубчатая;

4 – поверяемая
термопара тип ТХА градуировка ХА(К) или
ТХК градуировка ХК;

5 – образцовая
термопара тип ТПП градуировка ПП;

6 – переключатель
двухпозиционный; 7 – медные провода;

8 – магнитоэлектрический
милливольтметр со шкалой от 0 до 100 мВ,
класс точности 0,05;

9 – сосуд Дюара с
тающим льдом.

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Принцип работы и конструкции термопар

В простейшем случае термопара представляет из себя два разнородных проводника, которые образуют замкнутую электрическую цепь. Для получения такой цепи концы проводников соединяют друг с другом с помощью пайки, сварки или скрутки.

Если поместить один конец (спай) термопары в среду с температурой T1, а другой — с температурой T2, то в цепи будет протекать электрический ток, который вызывается термо-ЭДС. Данное явление получило название эффект Зеебека. При этом величина термо-ЭДС зависит только от разности температур спаев и материалов проводников. Таким образом, по изменению величины термо-ЭДС можно определить соответствующее изменение температуры. Проводники принято называть термоэлектродами, а места соединения проводников — спаями.

8619893389ee42cbbe59f14b10c544c4.jpg

Схема простейшей термопары. t1 > t2. А — положительный термоэлектрод, В — отрицательный термоэлектрод. Спай с температурой t1 — горячий спай (рабочий конец), с температурой t2 — холодный спай (свободный конец). Стрелками показано направление тока.

На практике температуру измеряют с помощью термоэлектрического термометра, в котором термопара является чувствительным элементом. Помимо нее в такой системе присутствуют и другие компоненты, которые, например, измеряют термо-ЭДС и преобразуют полученные значения в градусы.

Основными факторами, которые определяют конструкцию термопары, являются условия ее эксплуатации. Основные из них: диапазон измеряемых температур и свойства среды, в которой осуществляются измерения. Перечисленные факторы влияют на способ соединения термоэлектродов в рабочем спае, изоляции термоэлектродов, защиты термопары.

Соединение термоэлектродов может проводиться с помощью сварки, спайки или скрутки. В зависимости от диапазона измеряемых температур термоэлектроды могут быть изолированы друг от друга с помощью воздуха или специальных керамических трубок. В зависимости от свойств среды, в которой осуществляются измерения, термопара может иметь защитный чехол.

47724eeadc02f70f340e72934a80e2aa.jpg

Конструкция термопары. 1 — защитная гильза, 2 — неподвижный штуцер (существуют варианты исполнения с передвижным штуцером), 3 — головка, 4 — розетка из изоляционного материала с зажимами для присоединения термоэлектродов и удлиняющих проводов, 5 — патрубок с сальниковым уплотнением, 6 — соединительная трубка, 7 — термоэлектроды.

Преимущества термопары

Почему за столь долгую историю эксплуатации термопары не были вытеснены более совершенными и современными датчиками измерения температуры? Да по той простой причине, что до сих пор ей не может составить конкуренцию ни один другой прибор.

Во-первых, термопары стоят относительно дешево. Хотя цены могут колебаться в широком диапазоне в результате применения тех или иных защитных элементов и поверхностей, соединителей и разъемов.

Во-вторых, термопары отличаются неприхотливостью и надежностью, что позволяет успешно эксплуатировать их в агрессивных температурных и химических средах. Такие устройства устанавливаются даже в термопары всегда остается неизменным, вне зависимости от условий эксплуатации. Далеко не каждый датчик другого типа сможет выдержать подобное воздействие.

Технология изготовления и производства термопар является простой и легко реализуется на практике. Грубо говоря – достаточно лишь скрутить или сварить концы проволок из разных металлических материалов.

Еще одна положительная характеристика – точность проводимых измерений и мизерная погрешность (всего 1 градус). Данной точности более чем достаточно для нужд промышленного производства, да и для научных исследований.

Монтаж термопары

Импортные термопары устанавливаются точно также, как и отечественные, замена производится своими руками, рассмотрим самый простой метод.

  1. Открутите медную или свинцовую гайку подключения внутри резьбового соединения к газовой линии.
  2. Под монтажным кронштейном на термопаре нужно отвинтить компенсационный винт, который держит трубку на место.
  3. Вставьте новую термопару в отверстие кронштейна. Убедитесь, что система не подключена к газовому или электрическому снабжению.
  4. Нажмите на гайку для резьбового соединения, где медный провод подключается к газовой линии. Убедитесь в том, соединение чистое и сухое.
  5. Плотно закрепите соединение, но не перетягивайте, при необходимости установите керамический уплотнитель или защитные прокладки.

Нужно отметить, что контролер плиты должен быть вмонтирован не слишком сильно, но чтобы руками он не отсоединялся.

162b79d6f900349838913aec51dddeca.jpgФото – Термопара для печи

При установке медная и стальная труба подачи и отвода топлива или прочих веществ, направлены вниз – это очень важная зависимость.

Концевой выключатель расположен под автоматом контроля безопасности на печи, чуть ниже пленума. Если пленум становится слишком горячим, концевой выключатель отключает горелку. Он также отключает вентилятор, когда температура падает до определенного уровня, после того, как горелка выключается. Если вентилятор работает постоянно, либо контроль вентилятора на термостате был установлен в положение ВКЛ, то выключатель нуждается в корректировке. В первую очередь проверьте термостат. Если элемент был включен, то переведите его в автоматический режим, с предварительной установкой сигнала.

Любая лабораторная система контроля требует настройки. Градуировка или калибровка термопары также может осуществляться самостоятельно.

Для регулировки переключателя, снимите крышку элемента управления. Под ней находится зубчатый циферблат. Есть два указателя на стороне вентилятора. Указатели должны быть установлены около 25 градусов. Установите верхний указатель около 115 градусов по Фаренгейту, а нижний около 90 градусов. Если Вы почувствовали запах газа при выполнении этих работ или включения, нужно проверить утечку и уплотнители. Таким же способом можно заменить кабель и прочие детали системы.

Изготовление осуществляется на специальных заводах. Часто ремонт устройств можно осуществить непосредственно в дилерских центрах. Средняя стоимость термопары pt100 или овен (гильза с хромелем алюминия) составляет от 3 долларов до 6 в Москве. Перед покупкой обязательно проконсультируйтесь со специалистом, какое приспособление Вам необходимо, при потребности Вам будет предоставлена таблица предлагаемой продукции.

Термины и определения

Термоэлектрический эффект — генерирование термоэлектродвижущей силы (термо-ЭДС), возникающей из-за разности температур между двумя соединениями различных металлов или сплавов, образующих часть одной и той же цепи. Термопара — два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Соединение при измерении (рабочий конец для термопар) — соединение, подлежащее воздействию температуры, которую необходимо измерить.Соединение при контроле (свободный конец для термопары) — соединение термопары, находящееся при известной температуре, с которой сравнивают измеряемую температуру.

Длина монтажной части — для термопреобразователей сопротивления и термопар с неподвижным штуцером или фланцем — расстояние от рабочего конца защитной арматуры до опорной плоскости штуцера или фланца; для термопреобразователей сопротивления и термопар с подвижным штуцером или фланцем, а также без штуцера или фланца — расстояние от рабочего конца защитной арматуры до головки, а при отсутствии ее — до мест заделки выводных проводников. Длина наружной части — расстояние от опорной плоскости неподвижного штуцера или фланца до головки. Длина погружаемой части — расстояние от рабочего конца защитной арматуры до места возможной эксплуатации при температуре верхнего предела измерения. Диапазон измеряемых температур — интервал температур, в котором выполняется регламентируемая функция термопреобразователя по измерению. Рабочий диапазон — интервал температур, измеряемых конкретным термопреобразователем и находящийся внутри диапазона измеряемых температур. 

Номинальное значение температуры применения — наиболее вероятная температура эксплуатации, для которой нормируют показатели надежности и долговечности. 

Показатель тепловой инерции — время, необходимое для того, чтобы при внесении термометра сопротивления или термопары в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое будет в момент наступления регулярного теплового режима. 

Допуск — максимально допустимое отклонение от номинальной зависимости сопротивления (термопреобразователя сопротивления) или ЭДС (термопары) от температуры, выраженное в градусах Цельсия. 

Чувствительный элемент (ЧЭ) — элемент термопреобразователя, воспринимающий и преобразующий тепловую энергию в другой вид энергии для получения информации о температуре. 

Измерительный ток термопреобразователя сопротивления — ток, вызывающий изменение сопротивления термопреобразователя сопротивления при 0°С не более 0,1% его номинального значения.

 

Материалы проводников

Принцип действия термопары основан на возникновении разности потенциалов в проводниках. Поэтому к подбору материалов электродов необходимо подходить очень ответственно. Различие в химических и физических свойствах металлов является основным фактором работы термопары, устройство и принцип действия которой основаны на возникновении ЭДС самоиндукции (разности потенциалов) в цепи.

Технически чистые металлы для применения в качестве термопары не подходят (за исключением АРМКО-железа). Обычно используются различные сплавы цветных и благородных металлов. Такие материалы имеют стабильные физико-химические характеристики, благодаря чему показания температуры всегда будут точными и объективными. Стабильность и точность – ключевые качества при организации эксперимента и производственного процесса.

В настоящее время наиболее распространены термопары следующих видов: E, J, K.

1d4108c13bac9c2fe8dd911bf38fde44.jpg

Глава 1 Устройство термопары

§1 Принцип работы термопары. Эффект Зеебека

§2 Термоэлектрический термометр. Конструкции термопар

  • Концы двух термоэлектродов соединяются между собой в одной точке, образуя рабочий спай. Соединение происходит, как правило, с помощью электродуговой сварки, а термоэлектроды перед сваркой скручивают между собой. В специальных случаях вместо сварки может применяться пайка. Термоэлектроды из тугоплавких металлов, например, в вольфрам-рениевых или вольфрам-молибденовых термопарах, часто соединяют только скруткой без дальнейшей сварки.
  • Термоэлектроды должны быть соединены между собой только в рабочем спае. По всей остальной длине требуется их электрическая изоляция друг от друга.
  • Способ изоляции термоэлектродов зависит от верхнего температурного предела применения термоэлектрического термометра. Если указанный предел не превышает 100-120 °С, то может применяться любая изоляция, в том числе воздушная. При температурах до 1300 °С изоляцию выполняют с помощью фарфоровых одно- и двухканальных трубок или бус. При более высоких температурах электроизоляционные свойства пирометрического фарфора сильно ухудшаются, а сам он размягчается. В связи с этим при более высоких температурах используют трубки из окиси алюминия (до 1950 °С) и из окиси магния, окиси бериллия, двуокиси тория и двуокиси циркония (выше 2000 °С).
  • В зависимости от среды, в которой осуществляется измерение температуры, термопара может иметь наружную защитную трубку-чехол с закрытым концом. Данная трубка может быть металлической, керамической или металлокерамической. Она должна обеспечивать механическую стойкость термоэлектрического термометра, отсутствие механического напряжения термоэлектродов, гидроизоляцию, а в некоторых случаях герметичность термометра. Материал защитной трубки-чехла должен выдерживать длительное пребывание при температуре верхнего предела применения данной конструкции термопары, а также быть химически стойким к среде, в которой осуществляются измерения, обладать хорошей теплопроводностью. Защитная трубка-чехол должна быть газонепроницаемой и нечувствительной к действию резких изменений температуры.

Классификация типов конструктивного исполнения термопар

  • погружаемые;
  • поверхностные.
  • изготовляемые без чехла;
  • со стальным чехлом (до t ≈ 600 °С);
  • с чехлом из специального жаростойкого сплава (до t ≈ 1000-1100 °С);
  • с фарфоровым чехлом (до t ≈ 1300 °С);
  • с чехлом из тугоплавких сплавов (t ≈ 2000 °С и более).
  • с неподвижным штуцером;
  • с подвижным штуцером;
  • с подвижным фланцем.
  • с обыкновенной головкой;
  • с водозащищенной головкой;
  • со специальной заделкой выводных концов (без головки).
  • защищенные от воздействия неагрессивных и агрессивных сред;
  • незащищенные (применяются, когда измеряемая среда не оказывает вредного влияния на термоэлектроды).
  • негерметичные;
  • герметичные, предназначенные для работы при различных условных давлениях и температурах.
  • вибротрясоустойчивые;
  • ударопрочные;
  • обыкновенные.
  • однозонные;
  • многозонные.
  • с большой инерционностью – до 3,5 минут;
  • со средней инерционностью – до 1 минуты;
  • малоинерционные – до 40 секунд;
  • с ненормированной инерционностью.

§3 Удлиняющие (компенсационные) провода для термопар

101010

§4 Основные источники погрешностей измерений с помощью термопар

Глава 3 Материалы для термопар

§1 Требования, предъявляемые к термоэлектродным сплавам

  • Термо-ЭДС термоэлектродных сплавов, образующих термопару, должна быть достаточно большой для того, чтобы ее можно было измерить с необходимой точностью. Желательно, чтобы величина термо-ЭДС линейно зависела от величины температуры.
  • Температура плавления термоэлектродных сплавов должна быть выше максимальной рабочей температуры термопары. Разница между указанными температурами должна составлять не менее 50 °С.
  • Термоэлектродные сплавы должны обладать коррозионной стойкостью в рабочей среде термопары. Данное требование не всегда может быть выполнено, поэтому в таких случаях термоэлектроды защищают от воздействия среды с помощью защитного чехла.
  • Термоэлектродные сплавы должны отличаться воспроизводимыми и однородными свойствами при производстве их в промышленных масштабах.
  • Сплавы для термопар должны сохранять свою термоэлектрическую характеристику неизменной в процессе градуировки и эксплуатации.
  • Сплавы для термопар должны обладать хорошей пластичностью и прочностью.

§2 Никелевые и медно-никелевые сплавы

АлюмельХимический составФизические свойства

Таблица 9 Физические свойства сплава алюмель
СвойствоЗначение
Температура плавления, °С1400
Плотность, кг/м38670
Удельное электрическое сопротивление, Ом·м·10833±5
Средний температурный коэффициент электросопротивления (20-100 °С), °С-1·10423,9
Средний температурный коэффициент термического расширения (20-100 °С), °С-1·10612,0
Магнитные свойстваСлабо ферромагнитен
Температура Кюри, °С170

Механические свойства

Таблица 11 Механические свойства сплава алюмель
СвойствоЗначение
Предел прочности, МПа550-660
Предел текучести, МПа190-230
Относительное удлинение, %28-38
Поперечное сужение, %68-78
Твердость по Бринеллю120-130

ХромельХимический составФизические свойства

Таблица 12 Физические свойства сплава хромель
СвойствоЗначение
Температура плавления, °С1430
Плотность, кг/м38730
Удельное электрическое сопротивление, Ом·м·10868±5
Средний температурный коэффициент электросопротивления (20-100 °С), °С-1·1044,1
Средний температурный коэффициент термического расширения (20-100 °С), °С-1·10613,1
Магнитные свойстваПарамагнитен
Температура Кюри, °С-120

Механические свойства

Таблица 14 Механические свойства сплава хромель
СвойствоЗначение
Предел прочности, МПа620-720
Предел текучести, МПа210-240
Относительное удлинение, %24-34
Поперечное сужение, %67-77
Твердость по Бринеллю140-150

КопельХимический составФизические свойства

Таблица 15 Физические свойства сплава копель
СвойствоЗначение
Температура плавления, °С1220
Плотность, кг/м38920
Удельное электрическое сопротивление, Ом·м·10848
Средний температурный коэффициент электросопротивления (20-100 °С), °С-1·104-0,1
Средний температурный коэффициент термического расширения (20-100 °С), °С-1·10614,9
Теплопроводность при 100 °С, Вт/м·К21
Удельная теплоемкость при 20 °С, кДж/кг·К0,40

Механические свойства

Таблица 17 Механические свойства сплава копель
СвойствоЗначение
Предел прочности, МПа450
Относительное удлинение, %40
Поперечное сужение, %75
Твердость по Бринеллю90

КонстантанХимический составФизические свойства

Таблица 18 Физические свойства сплава константан
СвойствоЗначение
Температура плавления, °С1220
Плотность, кг/м38920
Удельное электрическое сопротивление, Ом·м·10848
Средний температурный коэффициент электросопротивления (20-100 °С), °С-1·104-0,1
Средний температурный коэффициент термического расширения (20-100 °С), °С-1·10614,9
Теплопроводность при 100 °С, Вт/м·К21
Удельная теплоемкость при 20 °С, кДж/кг·К0,40

Механические свойства

Таблица 20 Механические свойства сплава алюмель
СвойствоЗначение
Предел прочности, МПа450
Относительное удлинение, %40
Поперечное сужение, %75
Твердость по Бринеллю90

§3 Тугоплавкие металлы и сплавы

Сплавы вольфрам-ренийХимический составВольфрамХимический составМолибденХимический состав

§4 Благородные металлы и сплавы

ПлатинаХимический составПлатинородийХимический состав

Ссылки

Электронные компоненты
Пассивные
Резистор
Переменный резистор
Подстроечный резистор
Варистор
Фоторезистор
Конденсатор
Переменный конденсатор
Подстроечный конденсатор
  • Катушка индуктивности
  • Кварцевый резонатор
  • Предохранитель
  • Самовосстанавливающийся предохранитель
  • Трансформатор
  • Мемристор
  • Бареттер
Активныетвердотельные
Диод
Светодиод
Фотодиод
Полупроводниковый лазер
Диод Шоттки
Стабилитрон
Стабистор
Варикап
Вариконд
Магнитодиод
Диодный мост
Лавинный диод
Лавинно-пролётный диод
Туннельный диод
Диод Ганна
Транзистор
Биполярный транзистор
Полевой транзистор
КМОП-транзистор
Однопереходный транзистор
Фототранзистор
Составной транзистор
Баллистический транзистор
Интегральная схема
Цифровая интегральная схема
Аналоговая интегральная схема
Аналого-цифровая интегральная схема
Гибридная интегральная схема
  • Тиристор
  • Симистор
  • Динистор
  • Фототиристор
  • Оптрон
  • Резисторная оптопара
  • Датчик Холла
Активные вакуумные и газоразрядные
  • Электронная лампа
  • Электровакуумный диод
  • Триод
  • Маячковая лампа
  • Тетрод
  • Лучевой тетрод
  • Пентод
  • Гексод
  • Гептод
  • Пентагрид
  • Октод
  • Нонод
  • Механотрон
  • Клистрон
  • Магнетрон
  • Амплитрон
  • Платинотрон
  • Электронно-лучевая трубка
  • Лампа бегущей волны
  • Лампа обратной волны
  • Тиратрон
  • Кенотрон
  • Игнитрон
Устройства отображения
  • Электронно-лучевая трубка
  • ЖК-дисплей
  • Светодиод
  • Газоразрядный индикатор
  • Вакуумно-люминесцентный индикатор
  • Блинкерное табло
  • Семисегментный индикатор
  • Матричный индикатор
  • Кинескоп
Акустические
  • Микрофон
  • Громкоговоритель
  • Тензорезистор
  • Пьезокерамический излучатель
Термоэлектрические
  • Терморезистор
  • Термопара

Эта страница в последний раз была отредактирована 24 сентября 2018 в 08:31.

Недостатки измерения температуры с помощью термопары

К недостаткам применения термопары следует отнести:

  • Необходимость в постоянном контроле температуры «холодного» контакта термопары. Это отличительная особенность конструкции измерительных приборов, в основе которых лежит термопара. Принцип действия данной схемы сужает область ее применения. Они могут быть использованы только в том случае, если температура окружающего воздуха ниже температуры в точке измерения.

  • Нарушение внутренней структуры металлов, применяемых при изготовлении термопары. Дело в том, что в результате воздействия внешней окружающей среды контакты теряют свою однородность, что вызывает погрешности в получаемых температурных показателях.

  • В процессе измерения контактная группа термопары обычно подвержена негативному влиянию окружающей среды, что вызывает нарушения в процессе работы. Это опять же требует герметизации контактов, что вызывает дополнительные затраты на обслуживание подобных датчиков.

  • Существует опасность воздействия электромагнитных волн на термопару, конструкция которой предусматривает длинную контактную группу. Это также может сказаться на результатах измерений.

  • В некоторых случаях встречается нарушение линейной зависимости между электрическим током, возникающим в термопаре, и температурой в месте измерения. Подобная ситуация требует калибровки контрольной аппаратуры.

Adblock
detector